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N E W  K - A U T O M O R P H I S M S  A N D  A 
P R O B L E M  OF K A K U T A N I  

BY 

J. FELDMAN 

A B S T R A C T  

A property is introduced, for 1-1 measure-preserving transformations of 
probability spaces, called loose Bernoulliness (LB), which is invariant under 
taking factors, inducing, and tower-building. It amounts to replacing, in 
Ornstein's definition of very weak Bernoulli, the Hamming distance on strings 
by a coarser metric. The main result is the construction of a transformation To 
which is ergodic and of entropy 0 but not LB. On the other hand, any irrational 
rotation is LB. Consequently, the equivalence relation generated by inducing 
and tower-building (which I call Kakutani equivalence, and the Russians call 
monotone equivalence) has at least two distinct equivalence classes among the 
ergodic entropy zero transformations. A similar situation exists for ergodic 
positive-entropy transformations: on the one hand, any Bernoulli shift is LB, 
while on the other hand a non LB K-automorphism To can be made by skewing 
To over a Bernoulli base. 

I. Introduct ion 

Let S be a Bernoulli automorphism of the probability space (X, M, tz) witt 
independent generating partition ~ = {Po, P1},/z (P~) = �89 The term "automorph. 
ism" will here always mean bimeasurable measure-preserving bijection. For an) 

ergodic automorphism with finite entropy, call it T, on (Y, ~, v), let ~" be th~ 

skew product defined by 

l(Sx, y),  x ~ Po 
J'(x'Y)=[(Sx, Ty), xEP," 

I. Meilijson [7] has shown that J" is always a K-automorphism. This was notice( 

independently but later by myself and Ken Berg. 

The question leaps to mind, will J" always be a Bernoulli automorphism? If " 

is either an irrational rotation of the circle or itself a Bernoulli automorphism 
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then ~" is indeed Bernoulli (Theorem 2). The more interesting problem is to find 

some T for which T is not Bernoulli. 

Such T do in fact exist! Specifically: I introduce a property, loosely Bernoulli 

(LB), which must be possessed by any T for which ~" is Bernoulli (Corollary 2 to 

Theorem 3), and then construct an ergodic To of entropy zero which is not LB 

(Theorem 4). But actually the method gives much more. The condition LB is 

preserved under taking factors, inducing and building towers of finite measure 

(Theorem 3). Thus, in particular, LB is invariant under Kakutani-equivalence 

[5]: no single ergodic automorphism can induce both an LB automorphism and a 

non LB automorphism. Equivalently, no special flow built over an LB base can 

be isomorphic to a flow built over a non LB base. The non LB automorphism To 

is thus not Kakutani-equivalent to any irrational rotation (Corollary 1 to 

Theorem 4), even though both have zero entropy. It is further argued, in 

Corollary 2 to Theorem 4, that ~'o is also not LB, and consequently provides an 

example of a K-automorphism which is not Kakutani-equivalent to a Bernoulli 

automorphism. 

To the best of my knowledge, all previously known non-Bernoulli K- 

automorphisms have been constructed by an infinite sequenc e of independent 

cuttings and stackings, plus occasional addition of new material; cf. Ornstein [8]. 

Since this technique always gives rise to automorphisms which induce Bernoul- 

lis, as was essentially shown by L. Swanson [11], it follows that To is not 

isomorphic, or even Kakutani-equivalent, to any of these. 

It is further possible (Corollary 3 to Theorem 4), using results of Gurevi~ [4], 

to build a K-flow over To, thus providing an example of a K-flow which cannot 

be time-changed to a Bernoulli flow. 

Some of these techniques may be extended to study skew products over (S, ~ )  

where ~ is not independent. This will be carried out elsewhere; in the present 

paper just enough technique is developed to provide the examples mentioned. 

One of the crucial ideas is to substitute into the definition "very weak 

Bernoulli" (VWB) given by D. Ornstein [8], a certain notion of distance between 

strings of symbols which is different from the "Hamming distance" used by 

Ornstein. This notion has also been encountered by S. Ulam [12] in a biological 

context, and I feel that it is a natural notion for Information Theory. 

Essential use is made of the recent D. Ornstein-B. Weiss result [10] that every 

finite partition for a Bernoulli automorphism is VWB. 

This work was carried out mainly during the 1975 Symposium on Ergodic 

Theory at the University of Warwick, while on sabbatical leave from the 

University of California, Berkeley, and with partial support of NSF Grant MPS- 
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75-05576. I am grateful to Ken Berg, Jean-Paul Thouvenot,  and especially Harry 

Furstenburg for valuable suggestions and discussions; also to Don Ornstein for a 

suggestion which simplified the proof of Step V in Theorem 4. 

The referee has brought to my attention a note by A. Katok (Dokl. Akad. 

Nauk SSSR, 223 (1975), 784-792). The results announced there have some things 

in common with the present paper. To be exact: My definition LB, in the case of 

entropy zero transformations, is precisely the condition which appears in 

Katok's theorem 4, part 3. Thus, his announced results cover the zero entropy 

case of my Theorem 3. 

2. K - a u t o m o r p h i s m s  and Bernoull i  a u t o m o r p h i s m s  

Let S be a Bernoulli with independent generator ~ ={P,, ,P,},  / ,(P, ,)= 

t t (P  0 = '. Let T have finite generator ~ = {O~ : a C I} (although doubtless much 

of what follows does not really require this assumption). Let ~ be the partition 

{ t ~ o : a U I }  of X •  Y, where J=IU{O},  O o = P o x  y, and O. = P l x O .  for 

a E I .  

~ O,, Oh r 

Po P~ 

X 

If ~ is a generator under T then, as may easily be verified, ~ is a generator 

under 7". Let {g} be the stationary process defined by g ( x ) =  j if S"x @ P,. Let 

r l . (y)  = a if T"y E O~ Let "6=(x, y) = a if 7""y E 0n. Thus r].(x, y) = rl..~x)(y) if 

so. = 1, otherwise "~. (x, y) = 0, where the or. are partial sums of the se., defined by 

o-0=0 and ~o+, = ~. + so... The sC.,rl, and tr. may also be regarded, in an 

obvious way, as functions on X • Y. The processes may be viewed graphically 

thus: 

�9 "~ /  2 rl-i rh~ r h r /2""  
�9 " 0  1 0 1 0 0 1 0 1 1 " - "  

That is, the r/, are substituted for the l 's  in the s~-sequence in order, "qo being 

substituted in the first non-negative place j where s~j = 1, to obtain the 

-sequence. 

THEOREM 1. T is a K-automorphism.  

REMARKS. This is a special case of [7]. The general idea of the proof is to 
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utilize the fact that the probabilities/z{o'N = j} are "asymptotically flat", in the 

sense that limN_~Yj[ #{o-~, = j}-/z{o'N = j + 1} I = 0 which may be shown di- 

rectly, or by applying a theorem in [9]. This enables the process {r/~.} to "forget"  

where the process {r/j} is. 

THEOREM 2. If T is either an irrational rotation or a Bernoulli automorphism 

then T is a Bernoulli automorphism. 

PROOV. The case of an irrational rotation follows from Adler and Shields [1]. 

The case of a Bernoulli transformation is obvious, because if ~, is an indepen- 

dent generator for T then ~ is an independent generator for "/~. 

REMARK. It may be shown directly that for any ergodic rotation T of a 

compact abelian group, or any T which is direct product of such a rotation with a 

Bernoulli automorphism, 2r is Bernoulli. However,  I'll refrain from presenting 

that argument here. 

3. Loosely Bernoulli processes 

Let T be an automorphism on (Y, ~,  u), and ~ = {Qa : a E 1} a finite partition. 

By ~ is meant the partition generated by {T ~ : j  ~ i _ -  < k}. Let {rh} be the 

corresponding I-valued process, defined by TJy E Q,,r 

Now I define "very weakly Bernoulli" for a partition. This will differ from the 

original definition of [8] in two respects. One is minor: the use of measures hA. 

on I N • I N, rather than enlarging to a continuous probability space. This is easily 

seen to amount to the same thing. The second is more substantive: instead of 

demanding "::IN" in the definition below, I demand "for all sufficiently large 

N" .  That this apparently more stringent requirement is in fact equivalent to the 

original definition was pointed out to me by Don Ornstein. It may be seen by 

examining the proof of the lemma in [10]. I could have worked with the original 

definition throughout, making a corresponding change in the definition of LB, 

but the present form simplifies checking the basic example in Section 5. 

is called very weakly Bernoulli (VWB) for T if for every e > 0 it is the case 

that for every sufficiently large integer N and for each M > 0 the following 

holds: there exists a collection ~ of "good"  atoms of ~~ whose union has 

measure > 1 - e, and so that for each pair A, B of atoms in q3 the conditional 

distributions u(.  I A )  and u(.  [B), restricted to ~ ' ,  are "close" in this precise 

sense: there is a measure nA.,~ on I N • I N such that 

a) nA. ,~( '~•  and 

n~. ~( I  N • 13) = , ' ( ( n , , - - ,  nN) = t~ t B ) ,  
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and also 

b) nA,~({(a,/3): a differs from /3 in at least eN  places})< e. 

It was shown by Ornstein [8] that if T has a VWB finite genera tor  then T is 

Bernoull i  au tomorphism;  and by Ornstein and Weiss [10] that,  conversely,  for 

Bernoull i  au tomorphism every finite genera tor  is VWB.  

Now I in t roduce another  p roper ty  of a finite part i t ion .~ : that of being loosel) 

Bernoulli (LB) with respect  to T. The  only difference between VWB and LB wil 

occur  in (b), where  the notion of the closeness of the strings used there  will be 

replaced by a weaker  notion.  First, for two strings of symbols a = (al, �9 �9 �9 aNi 

and/3  = (b, , .  � 9  bN), set d(a , /3 )  = ( l /N) [  {j: a j r  bj}]. Then  condit ion (b) in the 

definit ion of VWB may be replaced by 

nA.s({(a, ~): d(a,  ~)  >= e}) < e. 

Now: for two strings a = ( a , . . . ,  aM) and/3  = (b,," "-,  bN), no longer necessar  

ily the same length, define a match ~r of a with /3 as an order-preservint  

bi ject ion from a subset @ ( z r ) C { 1 , . . . ,  M} onto  a subset N(Tr )C{1 , .  � 9  N} suct 

that b~(j~=aj. The  fit of the match,  I~-I,  is the number  ( l ~ ( T r ) l  

[ g t ( r c ) [ ) / ( M + N ) .  Of course [ ~ ( z r ) [ - - [ ~ ( z r ) [ ,  and if M = N  we just ge 

[@ (zr) ] /M.  The  distance 6 (a , /3)  is defined to be 1 - sup{[ zr[:  zr any match of 

with/3}. Notice that if 7r is a match of a with/3 then ~'-' is a match of /3  with 

and 6(~')  = 6(r  so 6 (a , /3 )  = 6(/3, a ) .  Also, 6 (a , /3 )  = 0 r a =/3. On string 

of equal  length, the triangle equali ty also holds, so that 8 is a distance; on string 

of varying length this is not the case, al though minor  changes in the definitiol 

could be made to fix this if it were needed.  Now say R is loosely Bernoulli (LB 

for S if it satisfies the previous definition of VWB with the following change 

instead of (b), I demand  the weaker  

b') nA, B{(a,/3): 6 ( a , / 3 ) > = e } < e .  
Here  is an argument  which shows that a certain apparen t  weakening of th 

definitions actually leads to the same thing. 

PRoPosmoY 1. Let (a~j), i , j  = 1 , . . . ,  N, be a matrix with nonnegative entri~ 

adding up to 1. Let  b~ =Eia~i and c~ =E~a,j. Let b', i = 1 , . . . , N ,  and c 

j = 1 , . . . , N ,  be probability vectors with E,[ b, - b',[ < e and E,] cj - c~l < e. The 

there is another matrix (a',j) with nonnegative entries adding up to 1 such th~ 

Eja'~ i = b', E~a'~j= c', and E~j [a~j-  a'~j ] < 2 e .  

PROOV. It will suffice to show the case c~ = c~, provided that E~il a,j - a'~i] " 

c ; for then one  can first fix the bj leaving the cj alone, and then fix the c i leavin 

the b i alone. So let us assume c i = c'j. Now: take each row i for which b, > b 
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look along it for terms a,i which are > 0, remove enough  mass from these aq to 

bring b, down to b',, and transfer the mass removed  from aq to some a,' i for 

which b~' < b',. This can certainly be done,  since xs b, = )2, b',. Call the new matrix 

a',,. The sum Z ,a ' ,  is still equal to ci for each j, while Zja'q = b'~ as desired. 

Finally, 

[ a,j - a ', I = 2 ~ { aq - a ',j: a~j > a ', } 
i. I i , j  

= 2 ~'~ { b , - b : : b ,  > b',} = ~'~ [ b , - b ' , ]  < e .  []  
i i 

REMARK. The result easily generalizes to the context  of marginals of 

probabil i ty measures  on product  spaces. 

COROLLARY 1. In (a) of the definition of V W B  and LB, it suffices to demand 

that the marginals of na. B approximate to within e. 

DEFINITION. This weaker  demand  I will call (a'). 

COROLLARY 2. In the definition of V W B  and LB it suffices, instead of saying 

"for all M > 0", to say "for all su~iciently large M > 0". 

PROOF. Suppose the definition is applied for e 2 and some M (for fixed e and 

N).  I show that, for any positive integer M '  < M, the definition also works. 

Let q~ be a set of 9~ atoms of measure  > 1 - e 2 satisfying the definition: so 

that associated with each A, B in ~ there is a measure  na, B on I u • I u satisfying 

(a), and (b) or  (b'). Those atoms of ~ M," which contain a propor t ion  1 - e of ~~ 

atoms in % we call q3'. The remaining 9 "M. atoms form a set of measure  < e. 

For A ' C ~ 3  ' set ~ d ( A ' ) = { A  E~d:  A CA'} .  For A E ~ q ( A ' )  set p ( A )  = 

v(A )/E,B~,~(a,) v(B).  For A ', B '  C q3' set 

na. w = ~'~ p ( a  )p(B)na, , ,  

where A is summed over  ~ ( A ' )  and B over ~3(B'). Then  (b) or (b') is satisfied 

for hA, ,,, since it is an average of measures  satisfying the condit ion.  As for (a): 

n a , , , ( a •  IN) = ~ , p ( a ) p ( B ) n a . , ( a  x I N) 

= Z p ( A ) p ( B ) u ( ( n , , . . . ,  T/N) = a I A )  

= ~ p (A  )~'((TI , , '" ,  T1N ) = a I A ) 

u(A ') 
= ~ u ( A I A ' ) v ( ( ~ , , . . . , ~ N ) = a ] A ) .  

E 
B ~ ' ~ ( A ' )  
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The  factor  in front is be tween  1 and 1/(1 - e),  and the summat ion  reduces  to 

u ( ( r l , , . . . , r l N ) = a l A ' ) .  A similar a rgumen t  works  for nA, B,(IN• Thus,  

af ter  a sh rewder  choice of e, one gets the weake r  looking (a') of Corol la ry  1. [] 

REMARK. If the en t ropy  h (T, L~ ) = 0, then the definition LB can be recast in a 

cons iderably  more  manageab l e  form:  namely ,  that  for every E > 0 and every 

sufficiently large N there exists a set g( of ~ ,N a toms of total measure  => 1 - e, 

such that  any two of the names  can be matched  bet ter  than 1 - e. The  proof  of 

this r emark  is easy and is left to the reader .  

In the r ema inde r  of this section, and in the next section there will be p roven  

several  functorial  p roper t ies  of " L B " .  It should be r e m a r k e d  that  all of these 

may  be proven  much  more  simply in the en t ropy  zero case, by using the above  

simplified definition, and the reader  may  want  initially to carry out  for himself 

this version of the a rguments .  However ,  in order  to obta in  all of Corol lary  2 te 

T h e o r e m  4, which is one of the main results of this paper ,  I will need the positive 

en t ropy  case. 

LEMMA 1. If  ~ is LB for T, and ~ C ~, then ~ is LB for T. 

PROOF. Choose  e > 0 and a sufficiently large N for  ~ and e 2. Choose  M > C 

and a cor responding  set of ~ ~ Let  Q3' be those ~ - a t o m s  which are 

made  up, to within a p ropor t ion  1 - e, of m e m b e r s  of ~3; then the total  measure  

of the m e m b e r s  of q3' is _>- 1 - e .  

Cont inue  exactly as in the proof  of the preceding  Corol lary  2, to obta in  fm 

each A ', B ' i n  ~3' a measu re  nA,~,, on I -N • I N which satisfies (a') and (b'). He re  I i, 

of course  the index set of ~. Howeve r ,  what  is needed  is a measure  on j r  • .IN 

where  J is the index set of ~ .  But .I can be regarded  as a certain collection ol 

subsets  of I, and by restricting hA.. B' to the subsets  of I N • I N cor responding  tc 

j r  • j r  one obta ins  a measure  on j r  • j r  satisfying (a') and (b') for ~ .  r- 

LEMMA 2. f f  ~. is LB for T, then so is ~ ~. 

PROOF. It suffices to consider  the case k = 1, because  then i terat ion gives th~ 

general  case. 

Pick e > 0. Since ~ is LB, pick N for & where  6 will be chosen later. Suppos~ 

a and /3 are in I N and are matched  be t te r  than 1 - 3 .  Let  a = ( a , , . . . , a N )  

/3 = ( b , , . . ' ,  bN). Let  6 = ( t~2 , . . ' ,  fir),  /3 = (/~2,'" ", bN), where  dj+, is the pai 

(aj, a i . , )  and/~j+l is (hi, bj.,). For  all pairs (at, aj.~) which are paired with (bj, bj§ 

we get dr., pai red with bj.,. If at least (1 - r of the a - s e q u e n c e  are paired,  s~ 
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that no more than 6N are unpaired, then at least ( 1 -  2 6 ) N -  1 of the terms of 

(a2, �9 �9 �9 a~) are paired and have the previous term paired as well. Consider the 

images of such terms in /3 via the match. Restricting to ( b : , . . . ,  bN) leaves at 

least (1 - 2 6 ) N  - 2 terms; and since no more than 6N terms of 13 were originally 

unpaired, at least ( 1 - 3 ~ ) N - 2  of these images will have the previous term 

paired. Thus there are at least ( 1 - 3 ~ ) N - 2  pairings induced between 

(c}2," ' , r  and ( f l 2 , " ' , f l N ) .  Pick 6 = e/4 and N at least 8/e. Then a match as 

good as 1 -  e for a and /3 gives a match as good as 1 - e for (fi~,. �9 .,tiN) and 

(/~,, �9 � 9  where a0 and b0 are chosen in any way whatsoever.  Now: an atom 

of ( T - ' ~  v ~ ) ~  is also an atom of ~o . Let nA.~ be the measure on I N •  N 

given by LB of ~. Extend this measure to allow for a 0-component  in the first 

factor and the second factor, which takes on with certainty the value a0 (from A ) 

in the first factor and bo (from B) in the second factor. This induces a measure 

fiA. B o n  IN )~ ~N, where i = I x I, using the map (ao, �9 �9 ", a~) ~ (d,, d~ , "  ", du) and 

( b o , ' " , b ~ ) ~ - , ( / ~ , , " ' , / ~ u )  to transfer the measure.  Then nA,~ will have the 

desired properties.  [] 

PROPOSITION 2. I f  ~ is LB with respect to T, and ~ is a finite partition with 

C5~~ then ~ is also LB. (Here ~o is the or-field generated by {~~ k =< 0}). 

PROOF. Pick e > 0. Pick 6 (whose dependence on e will be specified later). 

Pick L so 3~C~~ Pick N as in the definition of LB, for .~~ and 6. Then for 

each M > 0 ::leg C(~~176 = ~O(L+M) SO that if A, B E ~d then :t nA.B on ItL+~)M• 

I "-+')M satisfying (a) and (b') for 6 and ~ ~  Let @ - - { P , :  a E J} and ~ = 

{Pa: a E J}, with ~ C~"L and I ~ -  3~[ < 6. Then J can be regarded as certain 

subsets of I N+z, and a map is induced from I(L+')M• I (L+~)M to J • J, call it 49. 

Now fix M, > 0, and choose M so large that each @?M,-atom consists, up to 

1 - 6 ,  of a union of ~~  Then, as in previous arguments,  most 

@~ are made up mostly of atoms of cg, call these @~ q3,, and for 

A ~, Bj in ~, the measure hA,, B, is defined as EA. Bna. B o 49 ~v(A I A ~)v(B ] B~), the 

sum being extended over those A, B in q~ which are mostly contained in A~ and 

B~ respectively. Sufficiently small choice of 6 guarantees that (a') and (b') are 

satisfied for ~ and e. [] 

COROLLARY. I f  T is of entropy 0 and ~ is a finite generator which is LB  with 

respect to T, then every finite partition is LB with respect to T. 

PROOF. If T has entropy 0 and ~_~ = ~ then already 9~ = ~ ,  and Proposi- 

tion 2 may be applied. [] 
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4. Loosely  Bernoul l i  a u t o m o r p h i s m s  

DEFINITION. The ergodic automorphism T on (Y, ~3, v) will be called loosely 

Bernoulli (LB) if every finite partition of Y is LB with respect to T. 

THEOREM 3. 

a) If T is LB then so is every factor. 
b) If T is LB and v ( E ) > 0  then TE is LB. 
c) Conversely, if T~ is LB then so is T. 

PROOF OF (a). This is immediate from the definition. [] 

PROOF OF (b). Assume that T is LB. Let ~ = {Pa : a E I} be a finite partition 

of E. The object is to show that ~ is LB for Te. Let ~ ' = ~ U { Y - E } =  

{P,: a E I'}, where I ' =  I U {0} and Y - E = P0. Let v~ be v( . ) /v(E) .  Let {scj} be 

the I-valued stochastic process on (E, ~ /E ,  vE) defined by Tky  = P~,~,. Let {~} 

be the F-valued process on (Y, ~3, v) defined by T~ = P6(y). Let t. be the nth 

arrival time in E, counting forward from 1 for n > 0 and backward from 0 for 

n =< 0. Thus, so',, I E = ~.. 

Now pick e > 0 .  Pick e ' > 0 ,  to depend on e in a manner which will be 

specified later, but make sure 2 e ' <  v(E).  ~ '  is LB with respect to T, so N'  may 

be chosen "big enough" for T, ~ ' ,  e'. Also choose it so large that 

v ( E ) -  e ' < ~ ;  1 E ( T , ) = v ( E ) + 6 '  
] = 1  

on a set F '  of measure -> 1 - e'. F '  is obviously ~'~N'-measurable, correspondinl~ 

to a set F ' C I  'N'. Choose N between ( v ( E ) - e ' ) N '  and (v(E)+ ~')N';  since N 

can be chosen arbitrarily once it gets big enough, so can N. 

Now choose a nonnegative integer M. Choose M'  so large that for eact 

A E ~ ~  , t  M ~ M ' o n a s u b s e t o f A  whose v r - m e a s u r e i s a t l e a s t a p r o p o r t i o r  

(1 - e')  of that of A. Let ~ '  and nA' B' satisfy (a), (b') for this M'.  Also let ~d b~ 

the set of ~~ A such that v~(F'IA ) is - > 1 - ~ / ~ ;  since vr(F')~= 

1 - (e'/v(E)), the total measure of ~ (for v~) is => 1 - (X/e;/v(E)). Now for A, t 

in ~, define 

riA, B ( a , / 3 )  = ~ na,,B,(ot',fl')v(A'[A)v(B'lB), 
~ ' , / 3 ' ,  A ', B '  

where a '  ranges over all elements of F' containing a as the first N symbols in 1 

and/3 '  has a similar range relative to f3, A '  E ~d' and C A, while B '  E c~, and C/3 
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Then (without repeating explicitly the range of the summation at each stage) we 

have 

ha'B(Ot'IN)=~" ,~',~',A'.R'E nA, B,(a',fl')u(A'[A)u(B'[B) 

= ~ nA'.~'(ot',F')v(A'IA)u(B'IB) 
o~', A ', l~' 

<= ~ nA,~,(a',I'N)u(A'IA)~'(B'IB) 
~ ' , A ' , 8 '  

= ~ u((~'I,"',~j~')=a'IA')u(A'[A)u(B'IB ) 
~ ' . A ' , I 8 '  

= E v ! - -  ! v < v((~l , . . . ,~ ,O-a'[A)<=u((~, , , . . . ,~ ,N)=alA) 

= VE((~,,' ' ',~:N) = a [A). 

Similarly, hA, o(I N,/3) =< ue((~:,,""", SeN) = /3 I B). 
How much has been omitted in the above inequalities? The total mass of the 

deficit in hA, B(', I N) is dominated by the sum of the following four terms: 

1) 

t tN '  ~', nA, s , (F,I  -F ' )v (A ' IA)u(B ' IB  ) 
A ' , B '  

_-< v((~: ' , . . . ,  s  I'N - F ' I A )  

u(Y F ' [A)=v~(Y  F'IA)<= --; 

because A E ~d, and similarly, 

2) ~'~ hA,. B.(I 'N'- F', F ' )u(A'  I A )v(B'IB) <= X/~;, 
A ' , B '  

because B ~ ~3. 

3) Y'A' u(A' l  A)  summed over all A '  whose names have fewer than M terms 

in I; this is < e ' b y  choice of M'. 

4) Similarly EB, u(B' I B) over all B' whose names have fewer than M terms 

in I, which gives < e'. 

Thus, hA.B(' ,I  N) approximates the appropriate marginals to within 2(e '+  

X/e-;) in total variation. It is not a probability measure, but normalizing it clearly 

only changes it a little. 

Finally, if a '  and/3'  in F' have a and/3 respectively as the first N I-terms, and 
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6 ( a ' , [ 3 ' )<  e', then, since ( v ( E ) - e ' ) N ' <  N <  (v (E)+  e')N', it follows from 

the definition of 6 that 3(a, [3)< e ' / ( v (E)+ e'). 
Since riA. a is a sub-convex average of measures which give mass < e' to pairs 

(a ' , /3 ')  such that 6(a', [3')>-e', it follows that flA. B gives mass < e' to pairs 

(a,[3) with 6(a,[3) > e ' / ( v (E)+ e'). Normalization of fi does not change this 

much. 
So, finally, choosing e' very small--e 2/100 will surely be enough--causes ~ to 

satisfy (a') and (b') with respect to T and e. [] 

For the proof of (c) some lemmas will be needed. 

LEMMA 1. Let E be a set of positive measure in Y, and let E, = 
{ y E E :  T " y ~ E ,  T J y ~ E  for 0 < j < n } .  Then - X , v ( E . ) l o g u ( E , ) < o o .  

PROOF. Let q, = 2-", n = 1 , 2 , . . . ,  and p. = v(E, ) /v (E) .  Then {q.} and {p.} 

are both probability distributions, and - X . p .  log q. = - E . ( v ( E . ) / v ( E ) ) n  = 
1/v (E). But - X. p, log q. => - Y.. p, log p. ; see Billingsley [2]. [] 

LEMMA 2. I f  ~ is a countable partition, ~ = {R, ,R2, .  . . }, and 
- E, v (R.)  log v (R,)  < 0% then there is a finite partition ~ such that ~ o_| C ~.  

PROOF. This is implicit in the way Krieger [6] constructs his finite partition. 
[] 

LEMMA 3. Let R be a finite partition of Y, and v(E)  > O. Then there is a finite 
partition ~ of E such that, setting ~ ' = ~ U { Y - E} as before, we have ~ ,_ o D ~.  

PROOF. It will suffice to consider the special case where ~ = {E, Ro, R,} with 

v(E)  _-> v(Ro). 
Write F for Ro and set 

F , = { y E F : 3 n > O , T " y E E ,  T J y E F  if 0 < j < n } ,  

E , = { y G E : 3 n > O , T - " y E F ,  T - J y ~ E  if 0 < j < n } .  

A measure-preserving bijection from Fl onto E1 may be defined by sending each 

y in F1 to its first image in E~. 

Inductively, set Fk+~ = 

{ y E F -  ,=,0 F , : 3 n > O , T " y E E -  ~=,0 E~,TiY~ F -  ~=lO F~ if 0 < j < n } ,  

and set Ek+, = 

{ y ~ E -  ,=,0 E ~ : 3 n > O , T - " y E F -  ,=~0 F~,T- 'yU_E-  ,=10 E~ if 0 < j < n } .  
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A measure-preserving bijection from Fk+~ onto Ek+l may be defined by sending 

each y in Fk+, to its first image in Ek+l. 

I claim that the set F - t . . J ~ - l F k  = F~ has measure zero. For suppose 

v (F=)>0 .  Then also v ( E ~ ) > 0  where E ~ =  E -  1.3 ;_iEk, since v(F)<= v(E) 

while v(Fk)= v(Ek). Choose any y E F~. Then for every k, y ~  Fk+l, no images 

of y reach F-1.3~_~F~ before reaching E - l , . J ~  i E ,  and a f o r t i o r i  before 

reaching E~. It follows that no image of y can be in E~. This contradicts 

ergodicity. 

Now set Oo = I,.J;=l Ek, O1 = E - 00. Clearly each Fk is in ~ ,o ,  so Ro is. But 

so is E, which completes the argument. [] 

LEMMA 4. In order to prove that a particular partition ~ is LB for a 

transformation T, it suffices to find for each e > 0 some partition ~ ~ ~ so that for 
all sufficiently big N there exist arbitrarily big M for which the LB definition holds 
in the form (a'), (b') for that particular N, M, e. 

PROOF. It suffices to show that ~ satisfies the LB definition in the form (a'), 

(b') for every e > 0. To get this: an examination of the proofs of Lemma 1 in 

Section 3 and Corollary 7 of Proposition 1 in Section 3 shows that it suffices to 

get ~ satisfying LB in the form (a), (b') for (e /2)  4. Replacing (e/2) ~ by (e/2) 8 

enables us to replace "all M "  by "arbitrarily large M "  in the definition; 

again see the proof of Corollary 2 of Proposition 1 in Section 3. Finally, using 

(1/3) (e/2) ~ instead makes it possible to replace (a) by the weaker condition (a'). 
[] 

PROOF OF PART (C) OF THEOREM 3. In view of Proposition 2 of Section 3 and 

Lemma 3 above, it need only be shown that if TE is LB and ~ is a finite partition 

of E then ~ ' - -  ~ t O { Y - E }  is LB. Applying Lemmata 1 and 2 above, it may 

further be assumed that ~ o  contains the return-time partition {E~, E2, �9 �9 �9 } of E. 

In view of Lemma 4, it will suffice to find, for each e '  > 0, some ~ D o~ so that ~ '  

satisfies (a') and (b') for e', in the weakened form described there, where only 

"large" M'  need be considered. 

Let e '  be given. Let e be chosen >0 ,  depending on e in a manner to be 

specified later. Since E7_i lv(Ei)= 1, an integer K may be chosen so large that 

Et>KIv(Et)< e. Let ~ = ~ v {E~, . . . ,EK,  E r} where E K = 1.3~>KEI. This ~ will 

be shown to do the trick, provided e is sufficiently small. As before, let 

={O~: a ~ I }  and ~ ' = { Q o :  a E I ' } ,  where I ' = I U { 0 }  and Qo= Y - E .  
Again using the fact that ET-~ lv(Et)= l, there is for every e > 0  some ~(e),  

which for convenience will be taken < e, so that if A C E  and v ( A ) <  iS then 

Et>Llv(Et A A ) < e .  Define p: Y--->E by py = T-Jy where j is the smallest 
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nonnega t ive  integer  with T-Jy ~ E ;  thus p ' (y )  = {y, T y , . . . ,  Try -'} if y ~ E~. 

Then  u ( A ) <  8 ( e )  ~ u(p-~A)< e. 
Also let {~r {~r {lj} be defined as in the p roof  of par t  (b), so so',, [ E  = set. 

Let  A = inf{u(E~): u(Et)>O,l <= K}. Let ~ = (�89 4. Since ~ is LB for  T~, 

there  is some  "big  e n o u g h "  No for ~ and 8 ; also make  No > K/e ; and finally, 

m a k e  No so large that  if N -_> No then on a set F '  of measure  > 1 - 8, set t ing 

a '  = (sr . . . ,  ~ ) ,  the symbols  of a '  have a " typ ica l "  distr ibution,  in that  there  

are at least (1 - 6)u(Et)N symbols  in a '  which come f rom ~ ' - a t o m s  conta ined  in 

Et, for l = 1,- � 9  K. For  convenience ,  let us call such a symbol  a symbol of height 
l; that  is, a E I '  is a symbol  of height  l if O,  c E~, l = 1, �9 �9 �9 K. Thus  there  may  

be chosen a substr ing d of a '  consisting of N~ symbols  of height l, where  N~ is the 

smallest  integer  => (1 - 8 ) (E , )N .  F' is obviously a ~ ' iN-measurable set; let F'  be  

the cor responding  subset  of I'N: that  is, those strings a ' E  ~ N  which have  the 

descr ibed proper ty .  

Hav ing  chosen some N _-> No, choose Mo large enough  that  u(to>= -Mo)>= 
1 - 8. Then  it will be  shown that  if e is sufficiently small, 3 '  will satisfy (a') and 

(b') for e ' ,  all N => No, and all M ' =  > Mo. 

Now let L be chosen so large that  u ( G ) =  > 1 - 8, where  G = {~j E I..),~LEI for  

-M'<=j<=N}. Let ~ be  the part i t ion {E~,. . . ,EL, EL}, where  again E L =  

I,.)~>L Et. By a controlled a tom of ~ will be mean t  one with no T-~E L factor.  

Since ~ ~ D {El, E2, �9 �9 �9 }, M may  be chosen so large that  the following holds: 

there  is a set of a toms A of ~-~ of total  measure  > 1 - 8 ,  and for  each 

such a tom A a collection H ( A  ) of sequences  a E I N, with 

u ( ( ~ : 1 , " ' , ~ c N ) E I - I ( A ) ] A ) >  1 -  & and such that  

1) A has a p ropor t ion  => 1 - ~ of its measure  conta ined  in some  control led 

a tom B of ~ ,_0 ,. Wri te  B as O~!_ , , i  T-JEh~A~, where  I<_hj(A)<=L. 
2) {(~:1,'" " ,~N)- -  a} has a p ropor t ion  _-> 1 -  8 of its v ( . [ A ) m e a s u r e i n  some  

control led a tom C of ~NM'-, with C C B ;  C then may be wri t ten as 

(")~- M, I T JEh,~A, ~) where  1 =< hi(A, a) <= L and h~(A, a) = h~(A) for j -< 0. 

Let  ~d be those " g o o d "  a toms of ~ ~ with respect  to N and 8, which also 

satisfy (1) and (2). Thus  ~d has total measure  => 1 - 2 &  

An a tom A of ~ o  will be said to induce A '  in ~_M,,o if the sequence  of 

l - symbols  in the name  of A '  are precisely the r ightmost  of the symbols  in the 

name  of A ; that  is, writing j for the largest  integer  such that  t~ -> - M '  on all of  

A ' ,  the (constant)  value of (sc',~, . .  . ,  so',,,) on A '  is precisely the (constant)  value of 

(~:~,"',sc0) on A. If also a ~ l  ~ and a ' ~ l  '~, say ( A , a )  induces ( A ' , a ' )  if 

f u r t he rmore  the subsequence  of I -names  in a '  are precisely the lef tmost  

e lements  in a. 
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t o  Let A '  be an atom of ~ _ ~  on which - M'  =< to. If A E ~d, then say A induces 

A' properly if A induces A ', and the l-terms in the name of A '  appear according 

to the rule to>=-ho(A), t l=to-hl(A) , . . . , t ,=t j_ , -hj (A) ,  t i+,<-M' 
everywhere on A ', and tj + M'  < hj+,(A ); that is, in a manner consistent with the 

controlled ~_~ atom which contains most of A. Similarly, if A E ~ and 

c~ ~ H(A ), say (A, a )  induces (A ', a ' )  properly if (A, a )  induces (A ', a ' ) ,  and the 

gaps are consistent with the controlled ~NM,-, atom which contains most of 

{ (~c , . . . ,~ :N)=a ,A} ,  so that the first l-symbol in a '  appears in the place 

ho(A) + to, where to is the place of the last l-symbol in the name of A, and 

subsequent l-symbols in a '  have gaps h,(A,a)-1,  h2(A,a)-1, . . ,  between 

them. 

Notice that an A in ~ induces properly exactly ho(A) different A'E  ~'_~ 
corresponding to different values of to on A' ;  and given one of these A' ,  and 

given a ~ H(A),  there is then exactly one a '  in I 'N such that (A, a )  induces 

( A ' , a ' )  properly. Notice also that if A induces A '  properly, then v(A)>= 
v(p-IA fq A')>= ( 1 -  6)u(A ), and if (A,a) induces (A',a') properly then 

v((sc,, .. ., ~CN) = a, A ) _--> e((sc',,, ' ' '  , so',,,) = a,  p 'A A A ') 

_-> ( 1 -  6)v((~:,, . . ' ,  ~N) = a , a ) .  

Here is the argument: p is 1-1 on A '  because t0--> - M ' ,  and clearly measure- 

preserving, so the left hand inequalities are obvious in both cases. As for the 

right hand inequalities: let j be the largest integer for which tj -> - M'  on A' .  

Then pA' D A r D, where D is an ~0j ~-measurable set, which, by definition of 

proper inducing, must contain the ~ o  , atom in which A mainly lives; thus 

v(A f qpA ' )=>(1 -  $ )u (A) ;  

and a similar argument holds for the other case. 

Next, let ~d' be those atoms A '  in Q '_~ which have a proportion -> 1 - ~/6 of 

their measures filled up by t0{p 'A:A induces A '  properly}, and for which 

u ( ( ~ , .  �9  ~,)  E F' I A ' )  _-> 1 - ~/~, and for which also t,, => - M'.  Then ~d' has 

total measure -> l - ~ 6 .  

Now, for A' ,  B '  in ~',  a measure fia,.B, on I'" •  ''~ will be defined by the 

formula 

ha ' . o ' (O / ' , f l ' )  = E nA."(a, fl)u(P-'a la')v(P 'BIB'), 
A,B,t~, B 

where the nA, R come from the LB definition for ~, and where the range of the 

summation is as follows: A E ~, a C H(A),  (A, or) inducing (A', a') properly, 



30 J. FELDMAN Israel J. Math. 

B E ~d,/3 E It(B),  (B,/3) inducing (B', /3 ')  properly. It will be shown that if e is 

chosen small enough then the hA'.B', after normalization to total mass 1, will 

satisfy (a') and (b'). This will be done as was done in the proof of part (b), by 

showing that they satisfy appropriate inequalities, and that the error in total 

variation introduced in these inequalities is sufficiently small. 

If lIA,,B,(Ot',/3') is summed over all /3', then since each (B,/3) can induce 

(B' , /3 ')  for only one/3', any given/3 only appears at most once in the expanded 

sum, so 

nA, B,(a 'XI 'N)= < ~ nA,.(a X I"~)z,(p-~A [A')v(p-~B [B')  
A , B ,  el 

(i) 

= ~] ~'F((~,,''',SCN) = a IA)v (p - 'A  IA')v(p-~B IB'). 
A , B , ~  

The range of summation on A and a is as before, while now B ranges over ~3, 

subject to B inducing B '  properly. The B are disjoint, so the p-~B are, and 

(ii) 

u~((~, , . . .  ,~N) = a [A)v(p-~A I A')~'(p ' B I B ' )  
A , B , ~  

uE((,~, '" ,  ,~N) = a I A )v (p - lA  I A'). 
A ,  ot 

An estimate of three paragraphs back gives: 

v~((4:, ,- .- ,  ~ )  --- a I A ) =  v~((~:, , . . . ,~N) = a,A) 
vE (A)  

= v ( ( ~ , . . . , , ~ N ) = a , A ) <  i v((/~',,,...,,~',N)=a,p-tA N A ' )  
v(A ) = 1 -  6 v(p ~A N A')  

So one may write 

Y~ ~,~ ( (~, ,  �9 �9 �9  ~N) 
A ,  oe 

= ot I A ) v ( p  'A I A )  

(iii) 

= l - a  " ( ( ~ ; "  
m ,  ct 

,r p-~A IA'). 

The range of summation on A and a is what it was to begin with. If however this 

is enlarged a bit, so that all A E ~ ~ and all a E I N for which (A, a )  induces 

(A' ,  a ' )  are permitted, then one gets an inequality for the last expression: 
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1 
1 - 8 ~" v((~'n," ' ,  sc',N) = a, p- 'A  I A')  

A ,  ot 

(iv) 

Thus: 

and similarly 

1 
< v((sr ' ' '  , ~:~,) = a ' l  A '). = 1 - 6  

hA'. B,(a' • I 'N) --< ~ v((~, �9 �9 ", ~:k) ---- ot '1 A ') 

1 t N ~ i 
n,, ,  ,,,(l • t~') -< ~ ' ( r  ", ~;~) = t~'l B ' ) .  

In order to see that the excess is not large, it is necessary to see what mass has 

been thrown in at each of the inequalities ( i ) . . .  (iv). 

INEQUALITY (i). The total mass of the omission is precisely 

Z na,.(a, f l )v(p- 'a  I a ' ) v ( p - ' B I B '  ). 
ct' A ,  B, et, lJ 

The inside summation is over A E c~, a E l ( A ) ,  ( A , a )  inducing ( A ' , a ' )  

properly, B E ~, B inducing B '  properly, and f l ~ H ( B ) .  This is dominated 

(using estimates like before) by 

~] ~ v ( (~ t , . . . , ~N)=  fl [B)v(p-~A [A')v(p-~B I B'). 
A , B  fl ~H(B) 

Since v((scl, -- . , s cN, )~H(B) IB)<  6, the entire sum is less than 6. 

INEQUALITY (ii). The excess mass is precisely 

I B') ( Z  e~((~:~,..-,sCu) = a [ A )v (p- 'a  [A' ) )  p ( B  t -  [...J-1 B 
\A, a / 

v(B - Up- 'B  [B')11~_8 v ( (~; , . . . ,~ , )  = a'[A')<= v ( B ' -  tOp-'B I B'), <__ 

using previous inequalities. 

B ranges over all atoms of ~d which induce B '  properly. Thus, since B '  E ~d', it 

follows that v ( B ' -  U p-lB I B') <= 1 - X/6. 

INEQUALITY (iii). The total mass of the difference may be dominated by 

1/(1 - 3) times 
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1 - v( U {p- 'B  : B @ q3 and induces B properly}[ B'),  

which is less than ~/~. 

InEOUAHTY (iv). The difference may be dominated by 1 / ( 1 - 3 )  times the 

sum of two terms: 

1) v ( A ' -  tA {p-~A : A E q3, A induces A '  properly} I A') ,  which was already 

seen to be < 3. 

2) ~'~ v((sc;,, .. . , ~ ; N ) ~ H ( A ) , p - I A  IA') 
AEq3 

< 1 
1 - 8  ~ u ( ( r  [A')--< 6 

= A ~  1 6 " 

Sufficiently small choice of e will now guarantee that the normalized version 

nA, B, of hA, B' will have property (a') for T, ~ ' ,  N, M'  and e' .  

Finally, it is necessary to estimate hA,, ~,({(c~ ',/3'): 6(a ' , /3 ' )  _--> e '}). This may be 

estimated from above by the sum of three terms: 

hA, . . ({( ,~ ' , /33:  ~ ' , / 3 ' ~  V', 6 ( , ~ ' , / 3 3  -> ~'}) 

+ ~ A ' . . , ( r  ~ • ( r  N - v ' ) )  

+ fi,,, ,,((I 'N - F') • I 'N). 

The last two terms are dominated by ( 1 / ( 1 - 6 ) ) v ( I ' N - F ' I B  ') anc 

(1 / (1 -  6))v( l  ' '~- F ' I A '  ) respectively from the inequalities already noted. 

As for the first term: if a '  and/3 '  are in F' and c~ and/3 are in ~ and induc~ 

a '  and /3' respectively, then for each l = 1 , . . . ,  a and /3 each contain => N 

symbols of height I. Here,  as defined earlier, N, is the smallest intege~ 

=> (1 - 6)v(E,)N.  Suppose now that a and /3 can be matched well enough tha 

there are no more than 6N unmatched symbols in each string. Then there are n( 

more than ev (E j )N  unmatched symbols among those N~ symbols of a and ! 

which correspond to the chosen Nt symbols of height l in a '  and/3' ,  j = 1,- �9  K 

Thus there is a match induced from c~' to /3' which matches at least ( 1 -  3-  

e ) v ( E i ) N  symbols of ~ '  of height /, l = 1 , . . . , K .  Now, if a symbol of 3 '  in a 

has height l, and a '  is a string which can really occur, then the next j - 1 symbol 

ate zeros. Thus the match from a '  to /3 '  may be extended to a total of at leas 

( 1 -  6 - e )E~=, ju (E i )N-  (L - 1)pairs from (a' , /3 ') .  (The reason for subtractin: 

L - 1 is that the rightmost pair which is matched might not have enough spac 

left before the ends of the a '  and/3 '  strings to get in any more pairings.) So a 

and /3' may be matched better than 
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k K - 1  
( l _ 6 _ e ) ~ , j v ( E , ) _ _ _ > = ( l _ 8 _ e ) ( l _ e )  K - 1  ,=1 N - N~-~ - - - > ( 1 - 2 e ) ( 1 -  e ) -  ~" 

Summarizing the last paragraph: if a'  and/3 '  are in F', and 6(a, /3)  < & then 

8 (a ',/3') < 1 - (1 - 2e ) (1 - e) - e, which of course can be made less than e '  by 

choosing e small. So 

,~., . ( { ( ~ ' , / 3 ' ) :  , ~ ' , / 3 ' E  r,  8(o~',/33 --> ~'}) 

<= ~ na,,({(a, fl): 8(a , /3)>=8})u(p- 'a  ]A ' )u (p - 'B]B ' )<=& 
A , B , ~ , ( 3  

Now a sufficiently small choice of e (and consequently of 6) completes the 

argument. [] 

COROLLARY 1. I f  T is LB  then so is T. 

PROOF. (7")~,• is isomorphic in an obvious way to Se~ x T, which has T as a 

factor. [] 

COROLLARY 2. If 7" is Bernoulli, then T is LB. 

PROOF. '/~ Bernoulli ~ T LB ~ T LB by the previous corollary. [] 

5. Examples of non LB automorphisms 

THEOREM 4. There exists an ergodic automorphism To of entropy zero which is 
not LB. 

PROOF. The method will be to make longer and longer strings of symbols, 

putting them together by the stacking method (cf. Friedman [3]). Underlying the 

construction is the observation that no two of the following strings can be 

matched very well: 
a b a b a b a b ,  
a a b b a a b b ,  
a a a a b b b b .  

Step I. Description of the strings. Let I~ be an alphabet of N(1) symbols 

{a,. ,,. �9 �9 a~, N(~)}. I inductively construct sets I,+, = {a,+l, l, " " ", a . + l ,  N ( n + l ) }  of 

strings of length L(n  + 1), formed by stringing together members of I,. The 

strings a,,j are called n-symbols. The construction of (n + 1)-symbols goes like 
this: 

~'~ N(?I) 2 . N(n)  2 \N(n)2N(n+l)  
a n + | . l  = ~t~ ft. 1 �9 �9 a n ,  N ( n ) )  

[,,.~ N(n)4 N(n)4 ~N(n)2tN(n+l) I) 
a n + l , 2  ~ . r  1 " " " a n ,  N ( n ) ]  

a B+I ,N(r~+I)  = (a N ( r l ) 2 N ( n + l )  a N(n)2N(n+l)~N(n)2 
n,l  " " " n ,N(n)  ] �9 
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Thus L(1)=  1, and L(n  + 1)= L ( n ) N ( n )  ~"+'~+~. 

LEMMA. I[ N ( n  ) > 200 x 2 "+2, then for all positive integers r and s and all n, 

a;.~ and aa.~ cannot be fitted better than (1/8) (1 - (1 /2") )  if i < j. 

The argument is by induction, and is obvious for n = 1. Suppose, then, that we 

have a match between a',+,., and a;+,.,. Write j = i + k, with k > 0. Write a,  for 

N~,)~', Then ~ n , h  . 

a ; + , . , - - ( a , . . . c ~ . , )  ~'"~'~' . . . . . .  " 

and 
a ~.+],i - -  (oz N(.)2k.  " ' 0e N(")Z%N(")2~N~"§ U - ' ) * N ( . )  ! �9 

Now: a;;+1.j may be factored into N ( n )  2(N~'+'~ J)s strings of the form a~ ("~2k. The 

given match between a . '< ,  and a;;+~ j may be split into matches between the 

successive a ~(.)2~ and N(n)> N(n)aN("+u-k)s certain disjoint substrings of a/,+,~ 

whose union is all of a.'+~ ~. If we can show that each of these induced matches 

has a fit of no better than (118) (l - (I/2~+t)), then the original match likewise will 

have a fit of no better than (]18) (1 - (I12"+')). Now, substrings of a ~,+,. ~ are of the 

form 13(a1... aN(.)yy, where/3 and y are respectively final and initial substrings 

of the string at "" �9 aN(.) and t is a nonnegative integer. If we "complete" 13 and 

y, thus enlarging the substring ~ (a , . . . aN( . ) ) ' y  to (cz,.. .aN(.)) '+2, the total 

length I ~ ( ' ~ , ' " ~ , . , Y ~ I  + I ~ ' ~  I will be changed to I ( ~ , . . . ~ , . , ) ' + ~ I  + 
l a ~("):k ]. The added length is less than 2JN(n), where J is the common length of 

all the ah. So, if we regard our match between a~ ~"~ and 13(a,'" aN(.))'y as 

rather a match between oen N~"~2~ and (oe~ . . .  aN~.))'+2, the fit is decreased, but by a 

factor of no less than 

2JN (n )  2 1 1 
1 - ~ > 1  N ( n ) >  1 1002.+,. 

�9 OL ~r+2 So it will suffice to show that any match between an a ~("~ and (a, �9 �9 N~.~J , 

t >---- 0, fits no better than 

1 ( l  - 2"l-"l-vi-) ( 1 8  100121+,). 

Repeat  the above trick: ( a , " "  aN{,~) '+~ is a product of N(n ) ( t  + 2) strings of 

the form a,, l varying. Any match between a~ '~"~ and ( a , ' "  c~N~.~) '+2 may be 

decomposed into matches between these N(n ) ( t  + 2) successive a, and N ( n ) .  

(t ~-2) certain disjoint substrings of oe~ '~"~ whose union is all of a~  ~"~2k. Any 

substring of a ~"~=~ has the form b a ,~., c, where b is a final substring of a.. h and c 

an initial substring of a..~. If we "complete" the string ba'~.~c to obtain the 
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u + 2  u string a,.~, then the total length [ba , . , c  I + Is, I changes by less than 2L(n) ,  

and if we regard our given match between at and ba2.hc as one between o~, and 
u + 2  a , . , ,  the fit is decreased, but by a factor of no less than 

2K 2K 1 1 
1 la, l - 1  KU(n)  2 ,>1  1002 -+', 

here K is the common length of the a,.h. 
Now, any match between c~ and a string of the form a,~"+2 with h / l  fits no 

better than (1/8) (1 - (1 /2") ) ,  by induction hypothesis. The strings o~, for which 

l = h form a fraction 1/N(n)  of the total length of the string (c~,.. .  c~N~.~) '+2. So 

we are guaranteed that the total match between (a, �9 �9 �9 au~,~) '§ and c~ ~'~"~ has fit 

no better than 

8 1002 "+1' 

which is Jess than 

Step II. Construction of T,,. Take the unit interval, which we call F,, and 

partition it into N(1) equal intervals: .@ = {(9,, : a ~ I,}. Inductively, suppose we 

have constructed intervals F, and partially defined automorphisms ~, j = 

1 , . - . ,  n satisfying 

1) Fi~,CF , and T,+~D T,, 

2) ~ maps F) piecewise-linearly and disjointly for L ( n ) - 1  steps, with 

l . ( t )  I 

U 
m =q~ 

T T C  = F,, and ~ undefined on T~r ' ~ ,  

3) the L(j)-names of points in F, are, with equal probability, the N(j)  

j-symbols in lj. 

Divide Fo into N(n)  equal intervals A ' ,  . . . , A  N~"~ according to which 

n-symbol the L(n) -name takes on. Divide each A ~ into M ( n ) =  N(n)  2N~"+~ 

equal intervals A I , ' " , A  ~,~, and further divide each A~ into N(n  + 1) equal 

intervals A~ . , , . . . ,  A}.N~,.~. M(n )  is exactly the number of times each n-symbol 

occurs in each (n + l)-symbol. 

Set B~.k = T~, ~"~ 'A},k: the portion of the " roof"  of the nth stack which lies 

above the portion A ~, k of the floor F,. Set F,+~ I IN~-+'~ , = ' J k ~ ,  Ai.k = A i .  T,+lwillbe 

defined on F,+, for L(n  + 1 ) - I  steps, agreeing with T, wherever that has 
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already been defined�9 Here is the prescription: send A 11, k "upward" via T. for 

L (n) - 1 steps, arriving at T'. (")-1 A i,. k = B 11. ~. Map B I, ~ linearly onto A ~, k. Send 

A ~, k "upward" again via T. for L ( n ) -  1 more steps, to B~�9 k ;in general: having 

started at A I. k, and having arrived at B), k, after some number--say / - -of  trips 

from the floor to the roof, so that l n-symbols have been traversed in the 

process, send Bi, k linearly onto A;', k., where i' is the subscript of the (l + 1)th 

n-symbol in the (n + 1)-symbol si/.+l.k, and where 1 ' - 1  of the previously 

traversed n-symbols have had the subscript i'. In this manner, eventually one 
/::/N(.) arrives at "-'M(,).k, having in the process traversed, for each i and j, the column 

uN(-) Doing from A'j,k to B),k. It takes L(n  + 1) -  1 steps to go from All, k to ,-, M~.),k. 

this for each k gives a stack of height L(n  + 1) with base F,+~. 

It may easily be checked that the hypotheses (1), (2), (3) still hold. The 

common extension 7"(, of the 7", is defined on a set of measure 1, and 7",) clearl) 

has the property that for each n the interval F~ moves disjointly for L ( n ) -  l 

steps, and F~ splits into N ( n )  equal subintervals, the points of which take or 

with equal probability the n-symbols as their L(n)-names. 

Step IH. 7",, has zero entropy. There are at most L ( n ) N ( n )  2 different string~ 

of length L(n) ;  some may be repetitions of others. This is clear from looking a 

the tower based on F. and considering various starting points. So 

�9 1 
h (T) =< ]lrn L-- ~ log L ( n )  N ( n )  2 

But since 

Step IV. T,, is ergodic. 

n-strings. 

,. ( l o l L ( n )  2 log N(n)'~ 
= llrn ~ L ( n )  + L ( n )  }" 

N(n)_..§ h ( T )  O. 
L ( n )  O, = 

This may be seen directly, by counting k-blocks i 

Step V. To is not LB. If To were LB, then for some n there would be a subs~ 

A of the unit interval, of measure > 99/100, such that for any yl, y2 in A, th 

L(n)-name of yl and y2 match better than 99/100. Now, an L(n)-name consis~ 

of the tail of an n-symbol followed by the beginning of a (possibly differen 

n-symbol. It is easy to see, from the magnitudes involved, that y~ and y2 in �9 

may be so chosen that the one or two n-symbols making up the name of yl al 

different from those making up the name of y2; then, from the lemma, the tw 

L (n)-names cannot be matched better than 1/4. 1 

COROLLARY 1. To, although of entropy zero, is not Kakutani-equivalent to t 



Vol. 24, 1976 KAKUTANI EQUIVALENCE 37 

irrational rotation ; in other words, no f low built over To can be isomorphic to a f low 

built over an irrational rotation. 

PROOF. Immediate from Theorems 3 and 4. [] 

COROLLARY 2. 7"0 is a K-au tomorph i sm which is not LB.  Consequently it is 

not Kaku tan i -equ iva len t  to a Bernoulli  transformation, and  no f low over it can be 

t ime-changed  to a Bernoulli flow. 

PROOF. Immediate from Theorem 4 and Corollary 1 to Theorem 2. [] 

COROLLARY 3. There exists a K- f low which cannot be t ime-changed  to a 

Bernoulli flow. 

PROOF. In view of Corollary 2, it suffices to show that there exists a K-flow 

over 7"o. But this will follow from the next observation, which is perhaps worth 

isolating as a Proposition. 

PROPOSITION. For any ergodic automorphism T, there exists a K- f low over 7". 

PROOF. "F is a K-automorphism, and we let 5e be the "K-par t i t ion"  

generated by the past of ~ (see Section 2). Let f ( x , y )  = p if x E P0 and q if 

x ~ P~, where p and q are incommensurable positive real numbers. Then the 

results of Gurevif: [4] may be applied to show that the flow over T under f is a 

K-flow. [] 

SOME OPEN PROBLEMS 

A) Corollary 2 to Theorem 3 says that if T is Bernoulli then T is LB. Is the 

converse true? 

B) It is my feeling that "most"  ergodic automorphisms are not LB. It would 

be interesting to formulate and prove a precise result along these lines, or to find 

some "natural" ,  i.e., algebraic or geometric examples of non LB automorph- 

isms. 

C) In connection with the last proposition: is it the case that every 

K-automorphism, or perhaps even every ergodic automorphism of entropy > 0, 

can be the base of some K-flow? It is known, for example, that every ergodic 

automorphism can serve as the base for some flow with continuous spectrum. 

Note added in proof, February 21, 1976. In connection with Problem C, D. 

Ornstein and M. Smorodinsky have now shown that in fact any ergodic 

automorphism of positive entropy induces a K-automorphism, and any ergodic 

flow of positive entropy may be time-changed to a K-flow. 
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